
1. INTERLIS 2 Reader/Writer for FME

The INTERLIS 2 reader and writer module (ili2fme) provides the Feature Manipulation
Engine (FME) with access to INTERLIS 2 and INTERLIS 1 transfer files.

ili2fme is licensed under the Lesser GNU Public License (see LICENSE.lgpl).
Some libraries used by ili2fme are licensed under MIT/X (see LICENSE.mitx).
Some libraries used by ili2fme are licensed under Apache 2.0 (see LICENSE.apache).
Some libraries used by ili2fme are licensed under a library specific license (LICENSE.antlr).

ili2fme includes software developed by The Apache Software Foundation
(http://www.apache.org/).

ili2fme is in stable state.

This documentation describes version 5.0.x of ili2fme. The current version of ili2fme can be
found at http://www.eisenhutinformatik.ch/interlis/ili2fme/.

This chapter assumes you are familiar with FME and the INTERLIS 1 and 2 formats. For
more information about FME, please read the FME documentation. For more information
about INTERLIS, go to http://www.interlis.ch.

Please send comments about ili2fme to ce@eisenhutinformatik.ch.

1 Overview

Features read from an INTERLIS file consist of a series of attribute values. They may have no
geometry. The attribute names are as defined in the INTERLIS model. The feature type of
each INTERLIS feature is the qualified INTERLIS name (for INTERLIS 2: the qualified
name of the class, for INTERLIS 1: the qualified name of the table). The mapping of the
inheritance hierarchy is done with a super or sub-type strategy.

ili2fme supports the rich geometry model of FME.

ili2fme can read and write INTERLIS 1 and 2. However, in most cases you will need a FME
script or workbench to write INTERLIS.

2 INTERLIS 2 Quick Facts
Format Type Identifier ch.ehi.fme.Main
Long Format Name Swiss INTERLIS (ili2fme)
Reader/Writer Both
Dataset Type File
Feature Type Class name
Typical File Extensions .xtf, .xml, .itf, .ili
Automated Translation Support Automated reading
User-Defined Attributes Yes
Coordinate System Support No

mailto:ce@eisenhutinformatik.ch

Generic Color Support No
Spatial Index Never
Schema Required Yes
Transaction Support No
Geometry Type Attribute xtf_geomtype
Geometry Support (classic geometry model)

Geometry Supported Geometry Supported
aggregate no polygon yes
circles stroked donut

polygon
yes

circular
arc

stroked line yes

elliptical
arc

stroked point yes

ellipses stroked text no
none yes 3D yes

Geometry Support (rich geometry model)

Geometry Supported Geometry Supported
aggregate no polygon yes
circles stroked donut

polygon
yes

circular
arc

yes line yes

elliptical
arc

stroked point yes

ellipses stroked text no
none yes 3D yes

3 Reading INTERLIS 1-Data
To read INTERLIS 1-data, the Model (.ili) must be known to FME.
It can be stored:

• in $(FME)\plugins\interlis2\ilimodels
• in a special model directory you specify
• in the same directory than your data

Then you can select an INTERLIS 1-datafile (.itf) and open it with FME (Viewer,
Workbench, Universal Translator) and use it.

• All the enumerations from the ITFs will be converted to texts (values).
• If more than one geometry exists, the first geometry will be used as FME geometry,

the other ones will be stored as Hex Well Known Binary in Attributes.

4 Reading INTERLIS 2-Data
Reading INTERLIS 2-data is essentially the same than reading INTERLIS 1-data with the
following differences:

• The data comes in XTF-files (and not ITF-files)
• If your data models contain EXTENDS, FME will show all the data in a single

"superstructure" – feature type. You will have to use an AttributeFilter on
XTF_CLASS to separate the different classes in Workbench. Since ili2fme-4.4.0, the
data model may also be imported with a "subclass"-strategy rather than a “superclass”-
strategy. When "subclass" is chosen, a feature type is created for each concrete
extended class, whereas one feature type is created per parent class when "superclass"
is chosen.

5 Writing INTERLIS 1-Data
To write INTERLIS 1-data, the process is the following
Prerequisites: the INTERLIS model (.ili) has to exist before!

• Set up a Workbench
• Define an "Swiss INTERLIS (ili2fme)” destination dataset
• Import the feature type definitions from your ILI-model (Destination Data -> Import

FeatureTypes -> Browse to your ILI-file)
• Define a transfer identification for each feature, by setting the format attribute "xtf_id"

(e.g. generate it with a counter or map a format attribute like OBJECTID / FID or
similar)

• Route your features to the destination feature types (connect the arrows)
• GO!

6 Writing INTERLIS 2-Data
To write out INTERLIS 2-data, you will have to follow these steps in addition to the ones
explained for INTERLIS 1:

• Create one feature of feature type “XTF_BASKETS” for each TOPIC (With a Creator
/ NullGeometryCreator + AttributeCreator)

• Reference this basket in each feature type of the topic, by setting the format attribute
"xtf_basket" (e.g. by attaching a constant).

• Write all herited classes to a "superstructure" feature type. (or choose a subclass-
strategy)

• Define the qualified INTERLIS class name of each class, by setting the format
attribute "xtf_class" in each feature type

Please note, that:
• “XTF_BASKETS” features must be created by hand in a common transformation with

an INTERLIS 2 writer.
• “xtf_basket” format attributes must be set by hand in a common transformation with

an INTERLIS 2 writer.
• “xtf_id” format attributes must be set/mapped in a common transformation with an

INTERLIS 2 writer.
• You always need to provide fully qualified class names of the target INTERLIS

model. For example, the correct parameter might be:
"Fallbeispiel.Raumplanung.Bauzone".

• If the “xtf_class” format attribute is set, its value supersedes the name of the feature
type. This may lead to unexpected results if your features come from an INTERLIS
dataset, and “xtf_class” is still set (to the source class instead of the target class).

7 Writing GML-Data
Starting with version 5.0.0 ili2fme is able to write GML, according to the ILIGML
specification. To write out GML, just follow the steps explained for INTERLIS 2, but select a
file to write with extension ".gml".

8 Reader Reference

FME considers an INTERLIS transfer file to be a collection of features. The feature types are
determined by scanning the transfer file and then reading the appropriate INTERLIS
model/schema files. The model files have the extension .ili and should be located in the same
folder as the transfer file and/or in the folder ${FME}/plugins/interlis2/ilimodels. A transfer
file may need multiple model files. There are no DEF lines required.

8.1 Reader Keywords

The following table lists the keywords processed by the INTERLIS reader. The table shows
only the suffixes prefixed by the current <ReaderKeyword> in a mapping file.

Keyword Suffix Value
MODELS Required INTERLIS-models to read the

dataset (the model name, not the .ili-
filename; separated by semicolons ‘;’). Or
the special value %DATA, in which case the
models are determined by inspecting the
transfer file.
Default Value: %DATA

MODEL_DIR Folder containing the .ili-files. These files are
scanned for INTERLIS-models.
You may use %XTF_DIR as placeholder for
the directory of the data file that you will
read. Multiple directories may be separated
by semicolons ‘;’.
Default Value: unset/empty

GEOMETRY_ENCODING This keyword defines the encoding of
geometry attributes, which are not used as
FME geometry (Only the first geometry
attribute becomes a FME geometry).

• FMEXML encodes as FME XML
• FMEBIN encodes as FME Binary
• FMEHEXBIN encodes as FME Hex

Binary
• OGCHEXBIN encodes as OGC Hex

Binary
Default Value: OGCHEXBIN

CHECK_UNIQUEOID This keyword defines the checking of
TIDs/OIDs.
If set to True, ili2fme will check if
TIDs/OIDs are unique.
If set to False, ili2fme will by-pass this
check.

Default Value: True
CREATE_LINETABLES This keyword applies only to INTERLIS 1

datasets with INTERLIS AREA or
INTERLIS SURFACE attributes.
If set to True, ili2fme will create two
additional feature types for each INTERLIS
SURFACE or AREA attribute. One with the
ending “_MT” containing the main table data
as it appears in the transfer-file. The other
additional feature type with the ending
“_LT” containing the line helper table as it
appears in the transfer-file.
If set to False, ili2fme will create no
additional tables.
Default Value: False

SKIP_POLYGONBUILDING This keyword applies only to INTERLIS 1
datasets with INTERLIS AREA or
INTERLIS SURFACE attributes.
If set to True, ili2fme will not build polygons
from the line tables as they appear in the
transfer-file.
If set to False, ili2fme will build polygons
from the line tables and the (geo)-references
as they appear in the transfer-file.
Default Value: False

ILI1_ADDDEFVAL This keyword applies only to INTERLIS 1
datasets.
If set to True, ili2fme will parse the
explanation at the end of attribute definitions
that are optional. If there is no attribute value
in the data, ili2fme will add the one given in
the model. The syntax rule is:
'//' 'undefiniert' '='
Constant | 'letztes' 'Zeichen'
'//'.
If the value in the model is 'letztes'
'Zeichen' ili2fme will follow the first
reference attribute of this table, and use the
length of the value of the first text attribute in
the target table.
If set to False, ili2fme will not supply any
default values to the data.
OPEN: Example
Default Value: False

ILI1_ENUMASITFCODE This keyword applies only to INTERLIS 1
datasets.
If set to True, ili2fme will read values of
attributes of type enumeration as numeric
code (the same code as it appears in the
transfer file). This option is not
recommended and exists only for backward

compatibility reasons.
If set to False, ili2fme will map the code
from the transfer file to enumeration element
name (the value as it would appear in an
INTERLIS 2 transfer file). This option is
recommended because it is less error prone
and offers compatibility between INTERLIS
1 and 2.
Default Value: False

ILI1_RENUMBERTID This keyword applies only to INTERLIS 1
datasets.
If set to True, ili2fme will renumber the
objects, so that the TID becomes unique
across the whole transfer.
If set to False, ili2fme will read the TIDs
unchanged.
Default Value: False

INHERITANCE_MAPPING This keyword applies only to INTERLIS 2
datasets.
If set to “SuperClass” the superclass
inheritance mapping strategy is applied.
If set to “SubClass” the subclass inheritance
mapping strategy is applied.
See the section titled “Inheritance mapping
strategy” below for an explanation of the
different strategies.
Default Value: “SuperClass”

ILI1_CONVERTAREA This keyword applies only to INTERLIS 1
datasets and if SKIP_POLYGONBUILDING
is set to False.
The name of a FME pipeline definition file
(.fmi), to be used to build the FME polygons
from the line helper table features of
INTERLIS AREA attributes and main table
features as read from the ITF file. ili2fme
will set the following macros:

• $(lineTableName) name of FME
feature type with polylines on input

• $(mainTableName) name of main
FME feature type on input (point) and
output (polygon/donut)

• $(maxOverlaps) max overlaps as
defined by datatype of attribute in
INTERLIS model

The features that come out of the pipeline
should have $(mainTableName) as feature
type and polygon or donut as geometry.
If the filename is relative, the file is looked
after in the folder of the workbench first, and
then in $(FME)/plugins/interlis2/converter
If the value is not set, ili2fme will use a built-

in pipeline.
Default Value: unset/empty

ILI1_CONVERTSURFACE This keyword applies only to INTERLIS 1
datasets and if SKIP_POLYGONBUILDING
is set to False.
The name of a FME pipeline definition file
(.fmi), to be used to build the FME polygons
from the line helper table features of
INTERLIS SURFACE attributes and from
the main table features as read from the ITF
file. ili2fme will set the following macros:

• $(lineTableName) name of FME
feature type with polylines on input

• $(mainTableName) name of main
FME feature type on input (point) and
output (polygon/donut)

• $(mainTableRef) name of reference
attribute in feature type
$(lineTableName)

• $(maxOverlaps) max overlaps as
defined by datatype of attribute in
INTERLIS model

The features that come out of the pipeline
should have $(mainTableName) as feature
type and polygon or donut as geometry.
If the filename is relative, the file is looked
after in the folder of the workbench first and
then in $(FME)/plugins/interlis2/converter
If the value is not set, ili2fme will use a built-
in pipeline.
Default Value: unset/empty

CREATEFEATURETYPE4ENUM This keyword is used to control how ili2fme
creates FME feature types for INTERLIS
enumerations:
If set to "No", ili2fme will create no feature
types for enumerations.
If set to "SingleType", ili2fme will create on
single additional feature type
"XTF_ENUMS" and provide each element of
all enumeration types as a feature of this
feature type.
If set to "OneTypePerEnumDef", ili2fme will
create one feature type for each enumeration
type. This option is useful to setup a
ValueMapper factory in the FME
workbench.
Default Value: No

TRACEMSGS This setting controls the level of detail of log
messages written by ili2fme.
If set to True, ili2fme will write detailed
progress messages to the log.

If set to False, ili2fme will only write normal
progress messages to the log.
Default Value: False

9 Writer Reference

The INTERLIS writer module stores features into an INTERLIS transfer file. The required
models are determined by scanning the features and then reading the appropriate INTERLIS
model/schema files. The model files have the extension .ili and should be located in the same
folder as the transfer file and/or in the folder ${FME}/plugins/interlis2/ilimodels. A transfer
file may need multiple model files. There are no DEF lines required.

The appropriate feature types are expected by the writer, as if the same model would have
been read by the INTERLIS 2 reader.

This version of the Writer requires that the INTERLIS model already exists. The model can
not be generated by the Writer. Therefore, in most cases you will need a FME script or
workbench to prepare the expected feature types.

9.1 Writer Keywords

The following table lists the keywords processed by the INTERLIS 2 writer. The table shows
only the suffixes which will be prefixed by the current <WriterKeyword> in a mapping file.

Keyword Suffix Value
MODELS Required INTERLIS-models to write the

dataset (the model name, not the .ili-
filename; separated by semicolons ‘;’). Or
the special value %DATA, in which case the
models are determined by inspecting the
FME features.
Default Value: %DATA

MODEL_DIR Folder containing the .ili-Files. These files
are scanned for INTERLIS-Models.
You may use %XTF_DIR as placeholder for
the directory of the data file that you will
write. Multiple directories may be separated
by semicolons ‘;’.
Default Value: unset/empty

CHECK_UNIQUEOID This keyword defines the checking of
TIDs/OIDs.
If set to True, ili2fme will check if
TIDs/OIDs are unique.
If set to False, ili2fme will by-pass this
check.
Default Value: True

GEOMETRY_ENCODING This keyword defines the encoding of
geometry attributes, which are not used as
FME geometry (Only the first geometry
attribute becomes a FME geometry).

• FMEXML encodes as FME XML
• FMEBIN encodes as FME Binary
• FMEHEXBIN encodes as FME Hex

Binary
• OGCHEXBIN encodes as OGC Hex

Binary
Default Value: OGCHEXBIN

INHERITANCE_MAPPING This keyword applies only to INTERLIS 2
datasets.
If set to “SuperClass” the superclass
inheritance mapping strategy is applied.
If set to “SubClass” the subclass inheritance
mapping strategy is applied.
See the section titled “Inheritance mapping
strategy” below for an explanation of the
different strategies.
Default Value: “SuperClass”

USE_LINETABLES This keyword applies only to INTERLIS 1
datasets with INTERLIS AREA or
INTERLIS SURFACE attributes.
If set to True, ili2fme will expect one
additional feature type for each INTERLIS
SURFACE or AREA attribute. The
additional feature type with the ending
“_$(attributeName)” contains the line helper
features as they should appear in the transfer-
file.
If set to False, ili2fme will create the line
helper table out of the polygons/donuts.
Default Value: False

TRACEMSGS This setting controls the level of detail of log
messages written by ili2fme.
If set to True, ili2fme will write detailed
progress messages to the log.
If set to False, ili2fme will only write normal
progress messages to the log.
Default Value: False

10 Feature Representation

The following clauses describe how ili2fme maps INTERLIS objects to FME features.
Features written to the INTERLIS transfer file are expected to have the same structure, as
they would have had when read.

10.1 Overview

10.1.1 INTERLIS 1
INTERLIS allows for some nesting of type definitions. A class or table is defined in a topic.
Several topics are grouped to a model. FME doesn’t allow such a nesting. Therefore ili2fme
maps INTERLIS class with their qualified name to FME feature types.

Each FME feature type has a format attribute “xtf_id” that is the transfer identification of that
feature in the ITF file.

10.1.2 INTERLIS 2 full transfer mode
For INTERLIS 2 the mapping is the same as for INTERLIS 1, but only if there are no
extended topics in the INTERLIS model and there is only one basket per topic in the transfer
file.

If an INTERLIS 2 data file has multiple baskets (instances of a topic; set of objects) of the
same topic or the model has extended topics, additional format attributes are required.

To know which feature belongs to which basket, each feature has a reference to the basket in
the format attribute “xtf_basket”. Each basket is represented as an instance of the format
feature type “XTF_BASKETS”. The attribute “xtf_topic” holds the qualified topic name that
describes this basket (in this case that would be “ModelA.TopicA”). The attribute “xtf_id” of
the feature type “XTF_BASKETS” is the transfer identification of the basket.

10.2 Multiple geometries per class
An INTERLIS class may define multiple attributes of type geometry.

a : COORD
b : COORD

xtf_id
b : OGC HEX WKB

ili2fme maps the first geometry of the INTERLIS class to the FME geometry of the feature.
Any additional INTERLIS geometry attributes are mapped to ordinary FME attributes. The
value of these attribute (in this case the attribute “b”) is HEX encoded OGC WKB (this can be
changed with the parameter GEOMETRY_ENCODING) and can be extracted from that
attribute to the feature geometry with the transformer “GeometryReplacer” or set with
“GeometryExtractor”.

10.3 INTERLIS 1 AREA
INTERLIS 1 encodes attributes of type AREA in helper table prior to the main table. ili2fme
can read these attributes in three modes:

• build polygons/donuts automatically from the line table
• read the main table and the line table as they are in the transfer file
• combination of the two cases above

With automatic polygon building the mapping is as follows

a : AREA

xtf_id

With automatic polygon build disabled, the mapping is as follows

a : AREA

xtf_id
xtf_class = „ModelA.TopicA.ClassA“

xtf_id
xtf_class=“ModelA.TopicA.ClassA_a“

10.4 INTERLIS 1 SURFACE
INTERLIS 1 encodes attributes of type SURFACE in helper table following the main table.
ili2fme can read these attributes in three modes:

• build polygons/donuts automatically from the line table
• read the main table and the line table as they are in the transfer file
• combination of the two cases above

With automatic polygon building the mapping is as follows

a : SURFACE

xtf_id

With automatic polygon build disabled, the mapping is as follows

a : SURFACE

xtf_id
xtf_class = „ModelA.TopicA.ClassA“

xtf_id
xtf_class=“ModelA.TopicA.ClassA_a“
_itf_ref_ClassA

The line table (“ModelA.TopicA.ClassA_a_LT”) gets an additional attribute (with the name
of the main class; in this case “_itf_ref_ClassA”) that is a reference from the lines to the
feature in the main table (“ModelA.TopicA.ClassA_MT”)

10.5 INTERLIS 2 incremental transfer
INTERLIS 2 supports incremental transfers (change only transfers). Incremental transfer
happens per basket. There are two kind of incremental transfers: INITIAL and UPDATE.
INITIAL ist the first transfer in a serie of transfers. It includes all objects. UPDATE is used
for all succeeding transfers follwing INITIAL and includes only changed objects since the last
transfer. Both kinds require additional format attributes.

For an INITIAL data transfer, the XTF_BASKETS feature that represents the basket has a
value in the “xtf_endstate” attribute. The “xtf_startstate” attribute should not be set. There are
no “XTF_DELETEOBJECT” features. The “xtf_operation” attribute should not be set.

For an UPDATE data transfer, the XTF_BASKETS feature that represents the basket has a
value in the “xtf_startstate” and the “xtf_endstate” attribute. The “xtf_startstate” value is the
same as the “xtf_endstate” of the last transfer of that basket. The “xtf_operation” attribute
should be set to “INSERT”, “UPDATE” or “DELETE”. Instead of mapping deleted objects to
ordinary features with “xtf_operation” set to “DELETE”, they may alternatively be mapped to
instances of the format feature type “XTF_DELETEOBJECT” (without any INTERLIS
attribute values; just “xtf_id” and “xtf_basket”).

10.6 Inheritance mapping strategy
ili2fme supports to inheritance mapping strategies. Depending on you INTERLIS model, one
or the other is appropriate.

10.6.1 Superclass strategy

Attributes of non-root classes are shifted to the root, as illustrated by the following figure:

The format attribute „xtf_class“ may be used to determine if a feature is an instance of class
„ModelA.TopicA.ClassB“ or class „ModelA.TopicA.ClassC“.

10.6.2 Subclass strategy

Attributes of base classes are shifted to leafs, as illustrated by the following figure:

a

ClassA

b

ClassB

c

ClassC

xtf_id
xtf_class
xtf_basket
a
b

ModelA.TopicA.ClassB

TopicA

ModelA

INTERLIS model FME feature schema

xtf_id
xtf_topic

XTF_BASKETS

xtf_id
xtf_class
xtf_basket
a
c

ModelA.TopicA.ClassC

There is no feature type “ModelA.TopicA.ClassA” because it’s an abstract class in the
INTERLIS model.

10.7 Enumerations
There are two modes to read enumerations:
"SingleType" will read all elements of all enumerations with the same FME feature type
XTF_ENUMS.
"OneTypePerEnumDef" will create one FME feature type for each enumeration type.

10.7.1 Enumerations as one single feature type

For the feature type "XTF_ENUMS", the following features will be read:
thisEnum baseEnum iliCode itfCode seq
ModelA.TopicA.Color red 0
ModelA.TopicA.Color green 1
ModelA.TopicA.Landcover green 0
ModelA.TopicA.Landcover street 1
ModelA.TopicA.Landcover building 2
ModelA.TopicA.Landcover water 3
The property "baseEnum" is only defined, if the enumeration is an extended one.
The property "seq" is only set, if the enumeration is ordered.

10.7.2 One feature type per enumeration

For the feature type "ModelA.TopicA.Color" the following features will be read:
iliCode itfCode seq
red 0
green 1

10.8 Reference

10.8.1 Format Attributes

In addition to the generic FME feature attributes that FME Workbench adds to all features,
this format adds the format-specific attributes described in this section.

Attribute Description
xtf_id Value of the TID XML-attribute out of the

INTERLIS transfer file. Unique across all
feature types.

xtf_class Qualified name of the INTERLIS class
name. This is different from the feature type
name in the case of non base classes. In the
figure above would ModelA.TopicA.ClassB
be a possible value. If this value is not set,
the feature type name is used as the qualified
INTERLIS class name.

xtf_basket Value of the BID XML-attribute out of the
INTERLIS transfer file. May be used as
foreign key to a feature of the feature type
XTF_BASKET (see below). On writing, this

may be used to write multiple baskets of the
same topic.

If writing INTERLIS 1 transfer files, this
attribute is not required.

xtf_operation Only used for incremental INTERLIS 2
transfer. Possible values are: INSERT,
UPDATE, DELETE.

xtf_consistency Only used for somehow modified data. Not
yet fully supported.

xtf_geomattr Deprecated: Name of the geometry attribute
read (e.g. "Geometrie"). An INTERLIS class
may define multiple geometry attributes.

10.8.2 Format features

The reader creates additional feature types, and the writer expects this feature types as well. If
writing INTERLIS 1 transfer files, these feature types are not required.

10.8.2.1 Format feature type XTF_BASKETS
Attribute Description
xtf_id For each basket in the INTERLIS 2 transfer

file, the value of the BID XML-attribute.
xtf_topic Qualified name of the INTERLIS 2 topic

name. In the figure above would
ModelA.TopicA be a possible value.

xtf_startstate Only used for incremental INTERLIS 2
transfer. If set, it indicates an UPDATE
transfer. It indicates an INITIAL transfer, if
it is not set. If it is not an incremental
transfer, the value is ignored.

xtf_endstate Only used for incremental INTERLIS 2
transfer. If set, it indicates an incremental
transfer. If it is not set, this is not an
incremental transfer.

xtf_consistency Only used for somehow modified data. Not
yet fully supported.

10.8.2.2 Format feature type XTF_DELETEOBJECT
Attribute Description
xtf_id Value of the TID XML-attribute out of the

INTERLIS transfer file. Unique across all
feature types.

xtf_basket Value of the BID XML-attribute out of the
INTERLIS transfer file. May be used as
foreign key to a feature of the feature type
XTF_BASKET. On writing, this may be
used to write multiple baskets of the same
topic.

10.8.2.3 Format feature type XTF_ENUMS

This feature type is only created by the reader, if the keyword is
"CREATEFEATURETYPE4ENUM" is set to "SingleType".

Attribute Description
thisEnum Qualified INTERLIS name of the

enumeration definition of this element.
baseEnum Qualified INTERLIS name of the base

enumeration definition of this element. This
is only set, if the enumeration is
EXTENDED.

iliCode Qualified INTERLIS Name of the
enumeration element. Same as it would
appear in an INTERLIS 2 transfer file (XTF).

itfCode Code of the enumeration element as it would
appear in an INTERLIS 1 transfer file (ITF).

seq Ordering position of the element. Only set, if
this enumeration is ORDERED.

11 Limitations
• custom line forms
• XTF line attributes
• recursive structure attributes

12 Installation

12.1 Requirements
For the current version of ili2fme, you will need a JRE (Java Runtime Environment) installed
on your system, version 1.4.1 or later.
The JRE (Java Runtime Environment) can be downloaded for free from the Website
http://www.java.com/.
ili2fme was tested with FME 2008 (20080121 - Build 5164).

12.2 Files

To install ili2fme, choose a directory and extract the distribution file there.

Copy the files and subdirectories of "${ili2fme}/FME Suite" to your FME directory.

Add your standard INTERLIS models to the directory "${FME}/plugins/interlis2/ilimodels".

At runtime, ili2fme requires the following files:

${FME}/plugins/ili2c.jar
${FME}/plugins/ili2fme.jar
${FME}/plugins/jts-1.8.jar
${FME}/metafile/ch.ehi.fme.Main.fme
${FME}/formatsinfo/interlis2.db

12.3 Configuration

To use ili2fme with the FME Universal Viewer, FME versions prior to FME 2008 requires
you to set an environment variable: FME_VIEWER_THREADING=SINGLE.

ili2fme doesn’t use or require any windows registry entries or user settings file.

12.4 How to migrate/update an existing ili2fme installation

Just copy the files and subdirectories of the new "${ili2fme}/FME Suite" to your FME
directory.

Starting with ili2fme version 4.0, there is no longer a native part required. You may delete the
files iom_fme.dll and xerces-c_2_6-interlis2.dll.

13 FAQ

13.1 Usage
I am getting the following error: “missing model Roads”
In the folder of your data-file or your folder ${FME}/plugins/interlis2/ilimodels there is no
.ili-file containing a “MODEL Roads”. Move the file Roads.ili to the folder of your data-file
or the folder ${FME}/plugins/interlis2/ilimodels.

My destination format is INTERLIS and I’m getting the follwing error: “model
name not specified”
You must change the Parameter “MODELS” to “%DATA” or the name of the INTERLIS
model (without extension .ili) that you intend to write (on the Destination Dataset).

My destination format is INTERLIS and I’m getting the follwing error: “missing
mandatory attribute xtf_class.”
The appropriate feature types are expected by the writer, as if the same model would have
been read by the INTERLIS 2 reader. That means: Every feature type must have the
Attributes xtf_id, xtf_class, xtf_basket. There must be a feature type XTF_BASKET with
attributes xtf_id and xtf_topic.

My destination format is INTERLIS and I’m getting the follwing error: “missing
mandatory attribute xtf_basket.”
The appropriate feature types are expected by the writer, as if the same model would have
been read by the INTERLIS 2 reader. That means: Every feature type must have the
Attributes xtf_id, xtf_class, xtf_basket. There must be a feature type XTF_BASKETS with
attributes xtf_id and xtf_topic.

I have an INTERLIS model “Roads.ili”. Should I place into the folder
${FME}/plugins/interlis2/ilimodels?
Yes, if you read or write data according to that model more than once. (ili2fme will also look
in the folder of your data-file for INTERLIS models.)

Is the ordering of the model names as a value of the FME-keyword
“Ili2fme_Models” significant?
No, any ordering will do.

If a model imports other models (like “Units” or “CoordSys”), should I name all
models as value of the FME-keyword “Ili2fme_Models”?

No, but all required models (including indirectly imported ones), all required .ili-files, should
be in the folder of your data-file or the folder $(FME)/plugins/interlis2/ilimodels.

If a model imports other models (like “Units” or “CoordSys”), which one
should I name as value of the FME-keyword “Ili2fme_Models”?
Use the most specific one (the one that imports directly or indirectly all the other ones). The
imported models will be used automatically.

If a model extends another one, which one should I name as value of the FME-
keyword “Ili2fme_Models”, the base model or the extended one?
Use the extended one. The base model will be used automatically.

I would like to convert to a particular INTERLIS model. How can I import the
feature types?
Import the INTERLIS model file (file with the extension .ili), instead of a INTERLIS data
file. (You have to change the Filetype in the file selector dialog to “All Files” to see the ili-
files.)

13.2 Mapping
How to map XTF_ID, XTF_CLASS, XTF_BASKET if INTERLIS is the destination
format?
XTF_ID is the XML attribute TID and should be unique across all feature types. Typically the
value of the primary key of the source feature.
XTF_CLASS the qualified name of the destination INTERLIS-class. Typically a constant like
"ModelName.TopicName.ClassName" (the actual value depends on your INTERLIS model).
XTF_BASKET is the foreign key of a feature of type XTF_BASKETS.

How to specify at export the kind of transfer (FULL, INITIAL, UPDATE) and the
kind of feature operation (INSERT, UPDATE, DELETE)?
The kind of transfer is indicated by values in the attributes “xtf_startstate” and “xtf_endstate”
of the format feature type “XTF_BASKETS”. If “xtf_endstate” is not set, its an FULL
transfer. If “xtf_endstate” is set and “xtf_startstate” is not set, it’s an INITIAL transfer. If
“xtf_endstate” and “xtf_startstate” are set, it’s an INITIAL transfer.
The values INSERT, UPDATE, DELETE are required for incremental transfer. Use the
format attribute “xtf_operation”.

What is the purpose of the feature type "XTF_DELETEOBJECT"?
It’s a shortcut to signal “this object is no longer in the basket”.

What is the purpose of the format attribute “xtf_operation“? Which are the
possible values?
This format attribute indicates the kind of change to the object. Possible values are: INSERT,
UPDATE, DELETE. It’s only used with incremental transfer mode.

What is the purpose of the format attribute “xtf_consistency”? Which are the
possible values?
Possible values are: COMPLETE, INCOMPLETE, INCONSISTENT, ADAPTED.

If an attribute is of type enumeration (like „color: (red,green,blue);“: Is it
possible to get the values (0,1,2,...) instead of the resolved names?
No. In INTERLIS 2 the resolved name is the value. In INTERLIS 2 there is no mapping of an
enumeration to a numeric.

How are foreign keys mapped?
The value of the REF XML-attribute of the role (association end) gets the property value of
the feature, that contains the role.

How are 1-1 associations mapped?
Like defined by the INTERLIS 2-encoding rules. The end class of the second role (association
end) gets the property with the reference/foreign key. The property gets the name of the first
role.

How are BAG/LIST-attributes mapped?
BAG/LIST-attributes are mapped as list attribute.

How is inheritance mapped?
ili2fme uses a super or subclass strategy.

My INTERLIS model contains a lot of classes, but in FME, I see only a few of
them as feature types. Why?
ili2fme uses by default a super type strategy to map the inheritance tree of the INTERLIS
classes. Only root classes in INTERLIS become feature types in FME. You may consider
changing the mapping strategy to subclass.

How can I read the TID of records out of INTERLIS 1 transfer files (files with
extension .itf)?
The TID is accessible threw the XTF_ID attribute in each feature type.

13.3 Configuartion
Why does FME report: “No Reader named `ch.ehi.fme.Main' is available in this
FME version”?
This may have several reasons:

• No JAVA installed
• Wrong Version of JAVA installed (ili2fme requires at least JAVA 1.4.1)
• Wrong FME edition (normally ili2fme requires at least FME Professional)
• Maybe jvm.dll is not found by FME.

FME uses standard registry entries to find JAVA. Check your JAVA installation (Open a
command prompt and enter “java –version”).

14 Changes
See the file CHANGELOG.txt in the distribution of ili2fme.

15 License
 GNU LESSER GENERAL PUBLIC LICENSE

 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or other
authorized party saying it may be distributed under the terms of this
Lesser General Public License (also called "this License"). Each licensee
is addressed as "you".

 A "library" means a collection of software functions and/or data prepared
so as to be conveniently linked with application programs (which use some
of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work which
has been distributed under these terms. A "work based on the Library"
means either the Library or any derivative work under copyright law: that

is to say, a work containing the Library or a portion of it, either
verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included without limitation
in the term "modification".)

 "Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the
source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and
installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running a
program using the Library is not restricted, and output from such a program
is covered only if its contents constitute a work based on the Library
(independent of the use of the Library in a tool for writing it). Whether
that is true depends on what the Library does and what the program that
uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

 You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Library or any portion of
it, thus forming a work based on the Library, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no charge to
all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses the
facility, other than as an argument passed when the facility is invoked,
then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still
operates, and performs whatever part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a purpose
that is entirely well-defined independent of the application. Therefore,
Subsection 2d requires that any application-supplied function or table used
by this function must be optional: if the application does not supply it,
the square root function must still compute square roots.) These
requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then
this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it. Thus, it is not the intent
of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library. In
addition, mere aggregation of another work not based on the Library with
the Library (or with a work based on the Library) on a volume of a storage
or distribution medium does not bring the other work under the scope of
this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that
they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU
General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices. Once
this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies
and derivative works made from that copy. This option is useful when you
wish to copy part of the code of the Library into a program that is not a
library.

 4. You may copy and distribute the Library (or a portion or derivative of
it, under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for
software interchange. If distribution of object code is made by offering
access to copy from a designated place, then offering equivalent access to
copy the source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

 5. A program that contains no derivative of any portion of the Library,
but is designed to work with the Library by being compiled or linked with
it, is called a "work that uses the Library". Such a work, in isolation,

is not a derivative work of the Library, and therefore falls outside the
scope of this License. However, linking a "work that uses the Library" with
the Library creates an executable that is a derivative of the Library
(because it contains portions of the Library), rather than a "work that
uses the library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables. When a "work
that uses the Library" uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the
Library even though the source code is not. Whether this is true is
especially significant if the work can be linked without the Library, or if
the work is itself a library. The threshold for this to be true is not
precisely defined by law. If such an object file uses only numerical
parameters, data structure layouts and accessors, and small macros and
small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a
derivative work. (Executables containing this object code plus portions of
the Library will still fall under Section 6.) Otherwise, if the work is a
derivative of the Library, you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the
Library itself.

 6. As an exception to the Sections above, you may also combine or link a
"work that uses the Library" with the Library to produce a work containing
portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the
customer's own use and reverse engineering for debugging such
modifications. You must give prominent notice with each copy of the work
that the Library is used in it and that the Library and its use are covered
by this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the
user to the copy of this License. Also, you must do one of these things:

 a) Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the
work (which must be distributed under Sections 1 and 2 above); and, if the
work is an executable linked with the Library, with the complete machine-
readable "work that uses the Library", as object code and/or source code,
so that the user can modify the Library and then relink to produce a
modified executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the Library
will not necessarily be able to recompile the application to use the
modified definitions.)

 b) Use a suitable shared library mechanism for linking with the Library.
A suitable mechanism is one that (1) uses at run time a copy of the library
already present on the user's computer system, rather than copying library
functions into the executable, and (2) will operate properly with a
modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work was
made with.

 c) Accompany the work with a written offer, valid for at least three
years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy from
a designated place, offer equivalent access to copy the above specified
materials from the same place.

 e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy. For an
executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable
from it. However, as a special exception, the materials to be distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself

accompanies the executable.It may happen that this requirement contradicts
the license restrictions of other proprietary libraries that do not
normally accompany the operating system. Such a contradiction means you
cannot use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the Library
side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided
that the separate distribution of the work based on the Library and of the
other library facilities is otherwise permitted, and provided that you do
these two things:

 a) Accompany the combined library with a copy of the same work based on
the Library, uncombined with any other library facilities. This must be
distributed under the terms of the Sections above.

 b) Give prominent notice with the combined library of the fact that
part of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute the
Library except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the Library
is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties
remain in full compliance.

 9. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Library or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing
the Library (or any work based on the Library), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute
the Library at all. For example, if a patent license would not permit
royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of
the Library. If any portion of this section is held invalid or
unenforceable under any particular circumstance, the balance of the section
is intended to apply, and the section as a whole is intended to apply in
other circumstances. It is not the purpose of this section to induce you to
infringe any patents or other property right claims or to contest validity
of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to
the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice. This section is intended

to make thoroughly clear what is believed to be a consequence of the rest
of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new versions
of the Lesser General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Each version is given a distinguishing
version number. If the Library specifies a version number of this License
which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library does not
specify a license version number, you may choose any version ever published
by the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these, write
to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

	1 Overview
	2 INTERLIS 2 Quick Facts
	3 Reading INTERLIS 1-Data
	4 Reading INTERLIS 2-Data
	5 Writing INTERLIS 1-Data
	6 Writing INTERLIS 2-Data
	7 Writing GML-Data
	8 Reader Reference
	8.1 Reader Keywords

	9 Writer Reference
	9.1 Writer Keywords

	10 Feature Representation
	10.1 Overview
	10.1.1 INTERLIS 1
	10.1.2 INTERLIS 2 full transfer mode

	10.2 Multiple geometries per class
	10.3 INTERLIS 1 AREA
	10.4 INTERLIS 1 SURFACE
	10.5 INTERLIS 2 incremental transfer
	10.6 Inheritance mapping strategy
	10.6.1 Superclass strategy
	10.6.2 Subclass strategy

	10.7 Enumerations
	10.7.1 Enumerations as one single feature type
	10.7.2 One feature type per enumeration

	10.8 Reference
	10.8.1 Format Attributes
	10.8.2 Format features
	10.8.2.1 Format feature type XTF_BASKETS
	10.8.2.2 Format feature type XTF_DELETEOBJECT
	10.8.2.3 Format feature type XTF_ENUMS

	11 Limitations
	12 Installation
	12.1 Requirements
	12.2 Files
	12.3 Configuration
	12.4 How to migrate/update an existing ili2fme installation

	13 FAQ
	13.1 Usage
	13.2 Mapping
	13.3 Configuartion

	14 Changes
	15 License

